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Efficient ab initio method for inelastic transport in nanoscale devices:
Analysis of inelastic electron tunneling spectroscopy
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We describe the ab initio nonequilibrium Green’s function method for electron-transport calculations in
nanoscale devices based on the “efficient molecular-orbital approach.” This is implemented in the density-
functional theory code SIESTA with the additional option of including effects originating from electron-phonon
coupling. We also derive simple expressions for the conductance and the inelastic electron tunneling spectrum
(IETS) based on the rigorous lowest-order expansion formalism. In order to illustrate our method, we have

performed calculations of inelastic transport in a linear gold atomic wire and a benzene-dithiol molecule both
sandwiched between gold electrodes. In the latter case the leads have been constrained to maintain an overall
D,,;, symmetry, as typical of both high- and low-conductance systems. The shapes of the IETS, the effect of the
temperature, and of the symmetry of the IETS signals are analyzed in details.
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I. INTRODUCTION

Electron transport in single molecules or in atomic wires
connected to bulk electrodes, to which we refer shortly as
electrode-molecule-electrode (E-M-E) systems, has attracted
great interest because of the prospect for applications as new
nanoscale devices.! Experimental studies have succeeded in
measuring the I-V characteristics>* and reported nonlinear
properties of the /-V curves as the result of negative differ-
ential resistance for several groups of molecules.’”’ These
studies have shown the possibility of constructing functional
devices. Generally, it is difficult to manipulate, define, and
characterize with atomic accuracy the experimental contact
region between the molecule and the electrodes; hence theo-
retical studies based on ab initio calculations for realistic
E-M-E models, which explicitly contain the nanoscale con-
tacts and semi-infinite electrodes, are highly desirable and
useful.!#% Density functional theory (DFT) is among the
most convenient approaches for treating nanoscale systems
and offers an atomistic description without the need of
system-specified parameters. However, the application of
DFT to electron transport in E-M-E systems is not straight-
forward because of the nonequilibrium open boundary con-
ditions caused by the existence of the electrodes and the
applied bias voltage.

The nonequilibrium Green’s function (NEGF) formalism
is often adopted to overcome such difficulties, and it has
been combined with DFT (NEGF-DFT) to yield a practical
method for calculations.'®!® Several groups have recently
developed NEGF-DFT computational codes, and these have
been applied to E-M-E systems.!%14-16.19 However, the stan-
dard scheme of the NEGF-DFT requires an estimation of a
large Green’s function matrix (GFM), the computational cost
of which is very high for the self-consistent field (SCF) cal-
culation required by the method. From now on we will call
such scheme NEGF-SCF. For instance, one can point to dif-
ficulties in convergence and numerical instabilities in the in-
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tegration of the lesser Green’s function when the E-M-E sys-
tem has a large bridge molecule or the system shows low
coverage.

In the development of nanoscale devices the interaction
between electrons and nuclear vibrations (phonons) is an-
other central issue.>?*?2 For electron transport in E-M-E
systems, the electron-phonon (e-ph) interaction is important
and it leads to inelastic current as well as to corrections to the
elastic one.!>?>72° As a consequence, e-ph interaction affects
various characteristics of the devices, such as their conduc-
tance. Inelastic transport in molecular junctions is also inter-
esting as a spectroscopic tool. For instance the inelastic elec-
tron tunneling spectroscopy (IETS) allows us to measure
single adsorbed molecule vibrational spectra, and it can be
used both theoretically and experimentally to deduce infor-
mation about an adsorbate or the atomic details of a nano-
scale junction.?*?”-35 Furthermore, the vibrational heating,
caused by nonthermal phonon excitations due to e-ph inter-
actions (where the phonons are not distributed according to
the Bose-Einstein statistic), can trigger chemical reactions on
surfaces. Hence the local control of nonthermal heating is a
promising technique to perform chemistry controlled at the
single molecule level >-36-3

The NEGF method is formally extendable to both elec-
trons and phonons. The transport process can be expressed
using electron and phonon Green’s functions coupled to each
other through e-ph self-energy terms.*’ Although it is diffi-
cult to construct a general scheme for calculating the e-ph
self-energies, practical approximations exist in some cases.
When e-ph interaction is weak and the transit time through
the contact is sufficiently short (i.e., off-resonant to phonon
modes), the lowest-order perturbation theory (LOPT), which
is the second-order perturbation expansion of the total cur-
rent for the electron-phonon couplings, or the Born approxi-
mation (BA) may be good starting points.’%*!4> However,
Galperin et al.?* recently performed simple model calcula-
tions and pointed out that the LOPT cannot reproduce the
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shape of IETS and the BA has some shortcomings, e.g., no
conservation of current, etc. The self-consistent Born ap-
proximation (SCBA) is a valid response to the above-
mentioned problems,'>*>#3 but it is not a very practical
scheme for ab initio calculations since it has a much higher
computational cost than standard NEGF-SCF calculations
nonincluding e-ph interaction. First, the SCF calculation
shows more difficulty in converging because the SCBA pro-
cedure requires the simultaneous determination of both elec-
tron and phonon Green’s functions through e-ph self-energy
terms. Usually the lesser phonon Green’s function changes
rapidly when the bias is close to an eigenmode frequency.
Second, a large number of energy grid points must be taken
into account in order to estimate the e-ph self-energies. Fur-
thermore, NEGF calculations should be performed at each
applied voltage with very small increments if one needs to
evaluate the details of the IETS (when these are rather nar-
row in energy).

Recently, Frederiksen and co-workers proposed an
alternative approach named the lowest-order expansion
(LOE) approach. The LOE has the same form with the
lowest-order BA for the expression of the current. Then the
relating self-energies are expanded in the second order of
electron-phonon couplings, which consist of zero-order elec-
tron Green’s functions and the second-order phonon Green’s
functions constructed by electron-phonon self-energy terms
for phonon. The obtained phonon Green’s functions include
the contribution of (nonthermal) vibrational heatings, and the
resulting current by the LOE consists of the higher order
terms than the second order of electron-phonon couplings.
More recently, Viljas et al.?® derived a rigorous LOE expres-
sion. Comparing the standard BA, the LOE has a few merits
with maintaining preferable features of BA or SCBA for our
purpose. The first is the current conservation, which is
proofed in Ref. 26. The second is that the nonequilibrium
phonon is easily accounted for with the same order with the
electron, i.e., the second order of electron-phonon couplings.

One of the most important features of IETS is the relation
between its shape and the magnitude of the conductance. It is
well known that in many cases, the shape of the IETS
changes from a peak to a dip on increasing the ballistic
electron-transmission coefficients. This is sometimes called
the “0.5 rule”?*?73% with the meaning that a peak (dip) ap-
pears in the IETS when the elastic transmission coefficient at
that energy is smaller (larger) than 0.5. Recent theoretical
studies gave clear analyses of the 0.5 rule, but they are lim-
ited to a model system comprising a single (resonant) level
in the contact.

The symmetry properties of the IETS signals form an-
other important issue since they provide selection rules for
the individual molecular vibrations.?! In addition, establish-
ing the symmetry rules of the IETS will be also important in
designing a functional nanodevice because the IETS activi-
ties can be a useful tool to visualize an actual electronic
pathway in the bridge molecule.*> Although several theoret-
ical analyses have been performed in this context, some of
these studies adopt simplified models such as the cluster
model, focusing only on the totally symmetric normal
modes*® or have been performed within the BA,334147:48
where the phonon distribution is fixed with thermal equilib-
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FIG. 1. (a) The schematic picture of our two generic systems W
and W. In the transport setup, the device part is the C region, which
consists of the left (L) and right (R) lead parts and the central bridge
(c) regions. The two leads are connected to infinite bulk denoted as
Ly and Ry, and the Hamiltonian in Eq. (1) is defined for this W.
Note that the W is realistic but impossible to be calculated exactly.
The W is a model system for W, which replaces the Ly and Ly parts
to finite-size buffer layers. The Hamiltonian and density matrix in
the C region of W can be described by KS-SCF calculation for
result for the supercell W when the system is under equilibrium. (b)
The flow chart of the preliminary procedure in the efficient MO
approach. The procedure consists of calculations of embedding po-
tential, self-energies, EGF-SCF, and corrected density matrix. Re-
call that we need only the matrices on the C region after the pre-
liminary procedure, and the elements in the buffer part of W are
never used.

rium and vibrational heatings are often omitted. Therefore,
there are some rooms for analyzing E-M-E systems that
maintain high symmetry with the more rigorous ab initio
calculations based on the LOE framework.

In our previous work, we proposed an efficient scheme for
a self-consistent NEGF-DFT method based on molecular-
orbital (MO) theory, designated as the “efficient MO
approach.”!® This comprises three features, namely, (a) the
use of an embedding potential, (b) the perturbative expansion
of GFMs over the MO basis, and (c) a restricted MO space
during the NEGF-SCEF steps. The efficiency of our scheme is
demonstrated by analyzing a few test cases. In this paper, we
present several modifications and improvements to our effi-
cient MO approach. These consist of (i) an improvement in
how the embedding potential is constructed, (ii) the introduc-
tion of a numerically more accurate estimation of the density
matrix with a correction factor, and (iii) a correct O(N) al-
gorithm to calculate the self-energy matrix of the electrodes.
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Furthermore, we introduce a conventional form to analyze
the shape of the IETS within the LOE framework and apply
it to realistic E-M-E systems.

The paper is organized as follows. In Sec. I we provide a
brief review of the NEGF formalism including e-ph interac-
tion and a conventional LOE formula to be used in the
present study. Then, in Sec. III, we outline our NEGF-SCF
algorithm with details of the improvements in the method
mentioned above. A summary discussion of our scheme is
also given. Test calculations for two systems, an atomic gold
wire and a benzene-dithiol (BDT) molecule both contacted
with gold electrodes, are presented in Sec. IV. Finally our
conclusions are drawn in Sec. V.

II. NEGF FORMALISM
A. Theoretical background

In order to model transport in E-M-E systems, only the
device part (the region where the electrostatic potential dif-
fers from that of the bulk electrodes), which we denote as C,
is explicitly considered, while the semi-infinite electrodes,
which are labeled as Ly (left) and Ry (right), are renormal-
ized by self-energy terms. For later use, we symbolically de-
note the whole device, which includes the entire semi-infinite
Ly, Ry parts, and C as W. As standard, we further divide the
C region into three parts: the L, R, and ¢ regions. Here L and
R are regarded as the left-hand and right-hand side leads;
thus the self-energy terms are added to these L and R re-
gions. c is the center region, which relates to the junction and
includes a bridge molecule or wire and a few surface layers,
and is usually updated by the SCF procedure in the NEGF-
SCF calculations. A pictorial representation of those parti-
tions is presented in Fig. 1(a). First, let us introduce the
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Hamiltonian for the electrons coupled to vibrational modes
as follows:

H=H®+ H" + H*Ph,

H® = E (HCC)mm’djndm’ + E (HLBLB)ii’C;“-Ci’

!
m,m ii

+2 (HRBRB)jj’CZCi’ + [E (Hep) midci
ii' mi

+2 (HCRB)mjdj,,Cj] +[H.c.],
mj
th — E Qabzbm

B = > MS did, (bl +b,), (1)

m

!
a,m,m

where d' and ¢' are creation operators for an electron in the
C region and in the electrodes, respectively. The terms
(Hee)mm's (Hpgrgrr,)iis and (Hepycr,)mi are the matrix el-
ements of the mean-field Hamiltonian expressed over an
atomic-orbital (AO) basis set, respectively, in the C region,
the electrodes (bulk), and the transfer integrals. The operator
bL is the phonon creation operator associated to the vibra-
tional mode «, with frequency (1, and the e-ph coupling is
denoted as M;‘Lm,. In the present study, we consider e-ph
interaction only in the C region; hence the coupling term
M? . is defined only in C.

We start by describing the NEGF framework in the prac-
tical matrix form for ballistic transport, i.e., without e-ph
interaction. In matrix form, the electron GFM in the C region
can be written using an explicit block matrix

ES; -H; -2, (E) ES, -H,. 0 -
G%C(E) = ESIL - HZC ES(‘L‘ - Hcc ESCR - HL'R s (2)
0 ESip—Hlz ESgg—Hgg—Zg(E)

where the superscript “0” in G, indicates that there is no
e-ph interaction. S is the overlap matrix between the AO
basis functions and the units A=e=1 are used. Here, we as-
sume that the direct interaction between the L and R regions
is negligible, and this is justified by the use of the AO basis
as long as the central region is sufficiently large. The semi-
infinite electrodes connected to bulk Lg/ Ry are renormalized
by the lead self-energy terms 3, z(E).

When constructing G%-(E) under the finite bias V,, an
external potential V,,, which satisfies the appropriate bound-
ary conditions at the L and R regions, should be added to
H . In addition, the lead self-energies 3, x(E) must be

. Viy . .
shifted to X;z(E*+ ") in order to incorporate the above
boundary conditions. The lesser Green’s function, G<(E),

and greater Green’s function, G~ (E), can be calculated in a
matrix form using the Keldysh-Kadanoff-Baym (KKB)
equations*0:49-50

G%E(E) - GgC(E)[Ef(E) + E;(E)]G?:TC’

GUo(E) = GL (B2, (E) + 34 (B)IGY, 3)

where the lesser and greater self-energies relating to electron
(hole) transport from (to) electrodes are written as follows:

37(E)+2R(E) = ifL(E)FL<E + %) + ifR(E)FR<E - %)
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37(B)+ 33(E) = i, () - I}FL<E+ %)

+i{fR(E) - 1}FR< V;) )
The terms T} z(E) are i[3, z(E)-2] z(E)], and f, z(E) are
the Fermi distribution functions with the Fermi level w;p.
Since the density matrix Dqc is the energy integral of the
lesser GFM, the GFMs are determined self-consistently
through an updated H., where in the NEGF-DFT scheme
the Hamiltonian is the Kohn-Sham (KS) Hamiltonian.
The ballistic current, I°, can be formally expressed as a
function of V;, once the GFM has self-consistently converged

P(v)=— f dE T (E)GU(E) - 37 GE)]. (5)

This can be further simplified to yield the Landauer-Buttiker
formula®! using the transmission coefficient 7, as follows:

WV, = 717 J dE TH{T(E + V,/2)GLAE)T R(E = V,/2)
XGLAE)fL(E) - f(E)]

= }TJ dET|(E, Vy)[fL(E) = fr(E)] ~ GoTo(EF,0)V,,

(6)

where the last equation is often used at low bias because of
its convemence The term G, is the conductance unit Wh,
which equals 7—T in the present units, and Ey is the Fermi
energy. In this study, we include a factor 2 accounting for
spin degeneracy (we do not consider spin-polarized sys-
tems).

Next, we extend this formalism to inelastic transport by
including H®P". The e-ph interaction can be also renormal-
ized (as the presence of the electrodes) by using the
e-ph self-energies E: pn and Ee_ph. When phonon-phonon
coupling between different modes is negligible, the
above self-energies are simply the sum of the self-energies
of each individual mode, ie., X7 ,=3 Eaeph and
S ph=Z o2 gephe 220324 Since the e-ph interaction also
leads to a nonequlhbrlum phonon distribution, the phonon
Green’s functions for the mode «, D, and DE are required:

20,

D ()= ,
a(w) W’ - Qi +in— 2QaHe—ph:a(Q))
DZ(‘U) =DaHe<—ph:arD(i;’ (7)
where T17 phia and Il ., are e-ph self-energies of the pho-

non. The parameter 7 is a broadening parameter and de-
scribes the couplings between the mode « and a phonon bath
located in the electrodes, and it is responsible for phonon
dissipation. The lesser Green’s function, Di(w), corresponds
to the phonon distribution function N (w) and reads as fol-
lows:

D (w) =2iN(w)Im D, (w>0),

PHYSICAL REVIEW B 78, 235420 (2008)

D (w)==2i[1+Ny (- w)]m D, (»<0). (8)

Then the phonon occupation for the mode a can be approxi-
mately estimated by N,(Q,).
The electron GFM, G, is then obtained by including
o ph(E) in the Dyson equation, and Gcc is also obtained by
adding 37 n(E) to the KKB equation. When the e-ph cou-
pling and the energy barrier height V), at the interface (junc-
tion) satisfy the following condition:?

|MY < (AV; +T7 )", 9)

then the e-ph interaction may be treated as a weak perturba-
tion. In this case, the e-ph self-energies can be estimated
from the lowest-order diagram (second order in M%) and they
are obtained by a convolution integral, which includes the
terms M, G?C, Gees Df, and D,. Since the electron and
phonon Green’s functions are coupled to each other through
the self-energies, one can solve the coupled Dyson and KKB
equations self-consistently in the BA framework, i.e., all
Green’s functions should be simultaneously determined. This
is the SCBA. Although the SCBA has various advantages
when compared to the second-order Born expansion or the
LOPT,?* practical first-principles calculations for large mol-
ecules or low-coverage systems (i.e., where the cell describ-
ing the terminal interface is large) are complicated by the
high computational cost. This is because the SCBA includes
convolution integrals of both the electron and phonon ener-
gies and one needs to calculate the Green’s functions on fine
energy grids. A detailed analysis of the computational effi-
ciency for the SCBA is discussed in Appendix B of Ref. 12.
Furthermore, results obtained with SCBA calculations are
usually not very convenient for a detailed analysis of the
various contributions of e-ph scattering to inelastic transport.
Recently, the LOE framework, which is an extension of the
second-order perturbation expansion, has been proposed. The
LOE expression can reproduce the shape of the IETS ob-
tained by the SCBA and gives clear relations between the
current and the relative ratio between elastic and inelastic
e-ph scatterings. In Sec. II B, we present a simple formula-
tion for calculating the conductance and the IETS for inelas-
tic transport based on the LOE framework.

B. Conventional LOE formulation

As stated in Sec. I briefly, the LOE approach is formally a
simplification of the BA expansion, but it provides a practi-
cal way to reproduce a correct shape of IETS and to estimate
vibrational heatings consistently with the nonequilibrium
electrons without self-consistent calculations. Furthermore it
is convenient to carry out physical analysis by decomposing
the current into ballistic I°, elastic correction 8¢, and inelas-
tic /™! terms although it is only qualitative and not a unique
feature of the LOE. A rigorous formulation of the LOE ap-
proach was derived already by Viljas et al.,?® but practical ab
initio calculations of IETS have been performed only using
simplified LOE equations.?>?> In the present study, we pro-
pose the conventional LOE formulations for estimating ter-
minal currents and IETS signals assuming that (1) weak
electron-phonon coupling limit and (2) the density of states
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(DOS) for leads should be sufficiently smooth functions of E
in the region close to the focused (),, and the reader should
keep in mind the limitation of our LOE approach. Note that
this limitation is similar to the more simplified LOE,?*?* and
the recent study shows the limitation relating to the DOS is
sometimes relaxed for a practical use.!?

The total current is expressed as the sum of 1°, 8¢, and
el e,

I1=10+ 81+ [, (10)

Each term in the current can be obtained by integration of the
terminal current, i%(E), 8i°(E), and i™'(E). For instance, the
ballistic terminal current can be expressed as

) = ZTABS,E) ~ )] (11)

Since the rigorous LOE formulation contains an integra-
tion over the phonon energy, the calculation requires the es-
timation of the terminal current for each energy E. As a
result, the computational cost is still high. Thus the rigorous
LOE expression may be not sufficiently practical for ab ini-
tio calculations, just as the SCBA. Furthermore, the energy
dependence of the terminal current is sometimes important in
the analysis of the conductance as well as the energy transfer
due to electron-phonon scattering. Therefore, we propose a
simple LOE expression, which requires the same computa-
tional cost as the ballistic terminal current but it is more
accurate than the previous simplest LOE, where any energy
dependence in the Green’s functions is neglected and fixed
with the value at the Fermi level. In order to achieve this, we
introduce two approximations: (i) we take the O limit for 7
and Il ., in the integrals and (ii) we omit the energy shift
by , when evaluating the Green’s functions. The first ap-
proximation relates to the delta function approximation for
the imaginary part of the phonon Green’s function and it is
usually valid because the broadening factor for the phonon
Green’s functions is not very large when compared to the
typical numerical energy grid spacing. The second approxi-
mation is acceptable as long as the density of states or the
transmission coefficient does not feature a sharp peak
at E~Q,, which is consistent with our fundamental assump-
tion to introduce the conventional LOE. The detailed expres-
sions are given in the Appendix.

In order to represent details of the shape of the IETS, the
nonequilibrium phonon distribution should be evaluated.
Equation (8) shows that this is obtained from lesser phonon
Green’s function. Since we introduce the approximation (ii),
it is sufficient to estimate D} ({,). When the broadening
parameter 7 is sufficiently large, one can assume that the
energy transfer to the phonon bath (phonon dissipation) is
very fast and thermal equilibrium is always established. To
incorporate this aspect, 113 ohale) in Eq. (7) is slightly
modified as eph Q) —inNge(Q,,T), where Ngg is the
Bose-Einstein distribution function and 7 is the temperature
of the substrate (electrodes). Then we can obtain the term

N,(Q,) from I3 pha(Qa) and e 5. 0(€2,) as follows:

PHYSICAL REVIEW B 78, 235420 (2008)

1 Im 115, ,(Q,) = 7Nge(Q,.T) (12)
Im He-ph:a(Qa) - 77/2 )

Na(Qa) =

Although we omit phonon-phonon interactions, the dissi-
pation of the mode « caused by the coupling to bath modes
in electrodes is incorporated via the broadening parameter in
Eq. (12). In Eq. (12), setting the parameter 7 to 0 gives the
“externally undamped limit,” i.e., the efficiency of the vibra-
tional current induced heating is 100% (phonons generated
in the scattering region are never dissipated). In contrast, if 7
is set to p—o0, a given mode couples with the heat bath
(bath modes in electrodes) and it is in thermal equilibrium.
This is the “externally damped limit.” Usually, 7 has a finite
value, and therefore the vibrational heatings generated by
inelastic transport and dissipation are competing.”® The cal-
culation of 7 is a complicated issue that requires the solution
of dynamical equations for all of the phonon modes and their
couplings. In practice it can be estimated by fitting the DOS
of phonon (Ref. 12) though we do not adopt this fitting pro-
cedure in the present study and we leave it as a free param-
eter.

One can obtain the total conductance, G, or the IETS, dV s
by numerical differentiation of the calculated /-V curves.
However, in the usual IETS experimental situation, the ap-
plied voltage is low; thus the derivatives of terms including
only G%C, I';/z, and M“ with respect to V), are negligible

df;
when compared to the derivatives of the functions L{v and

dN,(£),)
A . As a result, one obtains simpler and numerically

more convenient formulas for the conductance and the IETS
as follows:

GWV)IGy=Ty+ 2, {7‘“(21\] +1)+2T°

“« dVb
_ TecSym + TeCSym@
a a dVb
+ 2T"N,(Q,) + 2Tm +7T7
T
(13)
1 dG d’N,,
— = 4(Tac T"‘) + 2(7ec T“‘) 5
GodV, < av,
- - sz
+ TeSym iy —2 5 14
% {( o o) v } (14)
where F, is the analytic function
Fa(vb’T) = (Qa - Vb)NBE(Qa - vaT)
+(Qo+ Vy)Nge(Qy + V,,, T) (15)

and T represents the averaged transmission functions T(E) as
a function of energy E in the range [ug,u;]. The transmis-
sion functions T% (E), Tecsym(E) and Tl (E) can be taken
from Ref. 26 and read
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T(E) =2 Re Tr[M“GO AEYMOGLAE)T R(E - V,)2)
WAE)TL(E + V,y/2)GL(E)], (16)

T;Csﬂ“ =21Im Tr[M”‘ Im GL(EYMOGLA(E)TR(E - V,/2)
WAE)TL(E + V,/2)GL(E)], (17)

T(E) = TAM G E)TR(E = V,/2) GE(E)M G (E)
XTL(E + V,/2)GLHE)]. (18)

In the present study, we adopt an atomic on-site Holstein
type model for the entire C region,>*>* which includes both
local and nonlocal couplings. Thus the matrix is expanded in
the AO basis. Then it can be transformed in the MO basis if
required. As discussed in the following sections, the MO
basis is useful for the analysis of e-ph coupling and the sym-
metry of the IETS. Therefore, at this time it is useful to
provide the matrix form in the MO basis

PHYSICAL REVIEW B 78, 235420 (2008)

Mi;= 2 (<I|£|J> - 8]<TI|J> - 81<1|_J>>Q
(19)

where |I) is the MO state and s? is its energy. R, is a Carte-
sian displacement coordinate for the atoms which are moved
and Qz is the mass-weighted eigenvector. Note that when 7 is
equal to J, the coupling is the deformation potential, i.e.,

d
M= E e or. % (20)

Since the term N, does not include the factor (f;—fz),
fixing £ with the Fermi level will be better than the above
averaging procedure. Omitting derivatives of To(E), etc.
with respect to the bias V,, as in the case of the IETS and
expanding TI7; (Q,) and Tl ,(€Q,) in the lowest order
for M“® we obtain

T“‘(EF)F (Vo T) + [T (Ep) + TP (E)]Q (Npp(Qo T) + 2 pNpg(Qy, T)

N,(Q,) = , 21
) = TZ'”(EF)Qw 72 2D

dN, 1 TME dF
- ( F) Y (22)

dVb 4 Te (EF)Q + 77/2 th
&N, 1 TNE)  d°F, 23)

AV ATNED)Q+ 92 dV2’
where the expressions T<"(E) and T"“®)(E) read

TUR(E) = TAMOGLAE)T  1(E = V,/2)GUAE)MAGYULE)T 1(E = V,/2)GLAE)], (24)
TNE)= Y, TIM®GLAE)TE *+ V,/2)GU(E)M® Im G (E)]. (25)

K=L.R

Equations (13), (14), and (21)—(23) will be useful in calcu-
lating the IETS as well as for analyzing the change of con-
ductance and the symmetry of IETS.

II1. EFFICIENT MO APPROACH

In this section, we describe our practical NEGF-SCF al-
gorithm, named the efficient MO approach,'?® with the im-
provements. Our approach aims at developing a scheme
placed in a middle position between the two standard ap-
proaches, based, respectively, on the “cluster” and the “peri-
odic slab.” In the former approach, the C region is modeled
by finite-size cluster (i.e., the two-dimensional periodicity of
the electrodes is omitted), and the lead self-energies are pa-
rameterized by bulk data as well as long-range bulk poten-
tial. The latter approach includes the exact two-dimensional

boundary condition for C; thus the system is calculated by
slab or supercell model. The cluster approach is computa-
tionally efficient and enables easy modeling of low coverage
and/or large E-M-E systems but it is somewhat arbitrary in
defining the cluster. Furthermore, recent studies show that
the extended molecule based on the cluster sometimes gives
a serious fluctuation of conductance and IETS signal caused
by waveguide effects.>>>® The efficient MO approach starts
from the latter periodic slab model to avoid such artificiality
and inaccuracy, although it contains several aspects from the
former model to maintain computational efficiency.

A. Embedding potential and correction of the density matrix

The GFMs require the Hamiltonian matrix H,- con-
structed from the KS Hamiltonian, which should contain
contributions from the connected deep bulk parts; thus the
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best Hpoe is the submatrix of the KS Hamiltonian matrix
obtained from the calculation of W the system. This can con-
tain the long-range self-consistent potential coming from Ly
or Ry layers. However it is impossible to apply KS-DFT for

truly semi-infinite W, hence one adopts V~V, which consists of
a few buffer layers outside the C region and calculation is
now possible [see Fig. 1(a)]. In the standard approach such
as SMEAGOL, the L and R blocks, H;; rr, are replaced to the
bulk Hamiltonian and fixed throughout NEGF-SCF. The re-
maining parts in the H, are updated by NEGF-SCF using

the result of KS-SCF for W as an initial guess. Therefore the
NEGEF-SCF step is necessary even if there is not applied bias
[this is sometimes called “equilibrium Green’s function
(EGF)-SCF”]. When one constructs the Hartree and the
exchange-correlation (XC) potential in the C region by using
the updated density matrix spanning the C region, long-range
electrostatic potential coming from the buffer layer will be
now missing. In addition, numerical continuity of H,;,.r
should be checked although the applied bias is 0 because
H;;zr are given form bulk Hamiltonian, not the obtained

self-consistent result of W. As a result one needs sufficiently
large C region even if the applied bias is small. The above
weakness leads to the high computational costs. Furthermore
it also leads the difficulty in convergence of the NEGF-SCF
(and EGF-SCF) caused by spicky density matrix when one
tries to reduce the size of C region.

In our previous study, we have proposed the introduction
of an embedding potential to overcome the above
difficulties.'* Here we further develop the scheme based on
the embedding potential by introducing a correction term
into the density matrix. The flow chart of the scheme is sum-
marized in Fig. 1(b). The starting point is rooted in the fol-
lowing assumption. Suppose that one performs a standard

KS-DFT calculation for the supercell W, which has a suffi-
cient number of additional layers as buffer. If one clips the

Hamiltonian matrix H-[W] from the resulting KS Hamil-

tonian of the W system, this Ho[W] will be a good approxi-
mation for the submatrix on the C region of really semi-
infinite E-M-E system W (at least at zero bias). Following
Ref. 13, we introduce the notation A[X] to denote that the
quantity A is obtained by clipping the matrix obtained by an
equilibrium calculation for the X system. If the above as-
sumption is valid, then the embedding potential matrix on
the C region, VeC“éb, can be defined as

VeR =He [ W] - (TEe + VEAD W+ VEAD W),
(26)

where 7" is the kinetic energy and D W] is obtained by a
standard KS-DFT just like the Hp[W]. If the assumption is

valid, we can expect that DCC[W] is a good approximation
for the density matrix of the C region. This embedding po-
tential is fixed through the NEGF-SCF calculations; thus the

calculation for the large W system is only performed once.
When one performs NEGF-SCEF, the electrostatic potentials
(and continuity) due to existence of Lz and Ry parts are
partially incorporated without explicit consideration of the
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buffer layers. These procedures lead another small difference
from the standard scheme. In our scheme, the L and R blocks
are also fixed through NEGF-SCF but no replacement to the
bulk terms. To maintain consistency between our scheme and
the standard NEGF-SCF scheme, we need to enforce the
match of the density matrices between the EGF-SCF for the
C region and the clipped matrix resulting from the equilib-

rium (i.e., KS-SCF) calculation for the W. Then we can in-
troduce a correction factor for the density matrix

~ i
AD¢c=Dc W]+ ;f dEG%f:(ENv,,:o- (27)

The EGF-SCF procedure combined with definition of a cor-
rection term is schematically given in Fig. 1(b). In the gen-
eral NEG-SCF step, the Hartree and XC potential terms are
updated by the corrected density matrix as

DCC = _;lJ dEG(():E(E) + ADcc. (28)

Indeed, the factor AD . should be close to O (if this is not
the case, our assumption will break down). However, ab ini-
tio calculations of G%C(E) sometimes provide numerical in-
stability for the sampled energy grid. As an example, when
the electrodes have a dense and complex structure, a very
large C region is required to eliminate such an instability.'>
Similarly the existence of a few strongly localized states on
the surfaces or of van Hove’s singularity leads to similar
instabilities.®%! Therefore, AD is useful for stable conver-
gence of the NEGF-SCF without increasing the sample en-
ergy grids for the energy integral, while maintaining consis-
tency with the embedding potential scheme. We emphasize
that the above scheme can describe the response of the given
E-M-E system to the applied voltage at the same level as a
standard NEGF based on the “periodic slab” approach, al-
though our scheme has the flexibility of a practical combina-
tion of approximations. For instance, we can use a KS-DFT

result converged with sufficient k£ sampling to define HCC[VT/]
and V& at the T point and AD¢¢. Then the NEGF-SCF
calculation for nonzero bias can be performed at the I" point
only. In this case, the system is described with high accuracy
by means of fine k-point sampling, but the response to the
applied bias is reduced to a I'-point calculation.

B. Expansion of the MO basis and restricted MO space

In order to perform practical NEGF-SCF steps, we em-
ploy a perturbation expansion of the Green’s functions (PT-
GFs) in the MO basis. This is obtained by diagonalizing the
KS Hamiltonian spanning the C region. The PT-GF matrix
G[C)TC can be represented by the following diagonal matrix:

GEE(E) = dlag|:{E - 8? - é(rL’[(E‘F Vb/Z)

-1
+ g (E - Vb/z))} } , (29)

where the term s}) is the energy of the /th MO. From the
KKB equation, the lesser PT-GF, GIZTC<(E), can also be writ-
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ten as a diagonal matrix. In each NEGF-SCF step, the den-
sity matrix is constructed by simply calculating the electron-
occupation number of each MO I,

d=— f dEGPL=(E). (30)
o

Here we recall that we incorporate the factor 2 for spin de-
generacy and that d; is transformed back to the AO represen-
tation when updating the Hamiltonian. One of the great ad-
vantages of using PT-GFs in the MO basis is that the
numerical evaluation of d; is much easier and faster than
calculating D¢ by using the full G%<C density matrix di-
rectly. Furthermore, one can introduce an approximation by
replacing E with Ej or with ! in ', x(E). If one uses one of
the above approximations, the integral in Eq. (30) is further
simplified and a quite accurate evaluation is possible by us-
ing the polynomial expansion technique without the need for
a large number of energy grid points.®?

The use of the PT-GFMs is restricted only to the NEGF-
SCF step in our algorithm; the final calculations to obtain
transport properties such as current and IETS are performed
using the full GFMs after the convergence of the NEGF-SCF
is achieved. Since our efficient MO approach contains the
scheme for the corrected density matrix described in Sec.
IIT A, the error caused by the use of PT-GFs instead of the
full Green’s functions is restricted only to the response of the
central region to the applied bias (charge transfer, net charge,
polarization). In our previous study, we analyzed the validity
of the perturbation expansion in the NEGF-SCF step and the
use of the embedding potential for the BDT/Au(111) system
and compared the obtained induced charge with the results
by the standard use of full GFM as well as the electric field
induced by the applied.'*> We found that that the use of Eq.
(29) is a good first approximation to estimate the change of
charge by the applied bias and also the condition that the
oft-diagonal element of I'; , is usually much smaller than the
diagonal element is satisfied. Recently, we have applied our
scheme to the calculation of an Au atomic wire attached to
Au electrodes, i.e., to a highly conductive system. In Ref. 58,
we checked the validity of the use of the embedding poten-
tial and PT-GF for NEGF-SCF and also found that the trans-
mission coefficients and the effects due to the applied bias
are in reasonably good agreement, just as in the BDT case.
We have checked the matrix elements in the MO basis for
the Au wire system. Typically, the ratio of the off-diagonal to
the diagonal elements, I';;/T";;, was lower than 0.3, a value
only slightly larger than that observed for the case of BDT
(typically I'};/T";;=~0.1). Hence, we conclude that the condi-
tion that the off-diagonal element of I';; is usually much
smaller than the diagonal element is satisfied for both the
BDT molecule and the Au wire. Note that the condition
IT,;/T ;| <1 does not justify the use of MOs as the zeroth-
order “eigenstates” in the perturbation theory.

However, the use of PT-GFs (and related matrices) seems
to be valid even if the perturbation theory for the eigenstate
is not suitable because the GFMs are the inverse of the (ef-
fective) Hamiltonian as given in Eq. (2). The omission of the
off-diagonal elements of the effective Hamiltonian expanded
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by the same MOs does not produce serious changes to its
inverse. This is in general true as long as the diagonal ele-
ments are larger than the off-diagonal ones. In this case, the
diagonal elements in the lesser GF consist of the factor of
O(I';;/T;;~1) but the factor in the off-diagonal elements is
O(I';;/T;)). Thus the use of Eq. (29) in the NEGF-SCF step
can be a good first approximation when |I';;/T;,|<1. We
remind the reader that the response (charge donation/back
donation, etc.) caused by the connection to the electrodes
(sometimes a strong interaction) is incorporated in the EGF-
SCF stage, i.e., it is free from the use of PT-GFs. Again, we
emphasize that the use of PT-GFs is only for estimating the
change in the density matrix caused by the applied bias.

To make the NEGF-SCF step even more efficient, we
have proposed a “restricted MO space” scheme and we have
applied it to several systems. Since we adopt this idea in the
present calculations, here we briefly provide an outline of the
method. Further details are given in Ref. 13. The concept of
the restricted MO space is similar to the scheme of the com-
plete active space (CAS) (Ref. 63) or fully optimized reac-
tion space (FORS) (Ref. 64) in quantum chemistry. The cen-
tral goal of the NEGF-SCF step is to determine the
occupation number, d;, as shown in Eq. (30). On one hand, if
the MO energy is much lower than the Fermi energy, the
occupation number can always be fixed to 1; thus these MOs
are electrically “inactive”(filled at any relevant bias). On the
other hand, MOs whose energies are much higher than the
Fermi level will always be empty, i.e., their occupation num-
ber can always be fixed to 0 and they can be regarded as
“virtual” MOs. Therefore, the occupation numbers should be
determined by the KKB equation as nonequilibrium quanti-
ties only for the “active” MOs, whose energy is within the
bias window or around the Fermi level for the zero-bias
limit. These form the restricted MO space as a small part of
the entire MO space. The size of the restricted MO space can
be fixed by the bias range for the system of interest. Usually,
the applied bias is a few volts against an electrode bandwidth
of a few tens of volts, hence the restricted MO space is
smaller than 10% of the entire MO space. Note that the fixed
occupation in the present NEGF-SCF scheme is imposed
only to the inactive and virtual MOs. However orbital relax-
ation is allowed for all MOs since the Hamiltonian is con-
structed from the new density matrix.

C. Accurate O(N) algorithm for a lead self-energy matrix

For quantitative calculations of nanodevices it is impor-
tant to model the electrodes as well as the contacts. There are
several methods for constructing the lead self-energy matri-
ces by ab initio calculations within a mean-field approxima-
tion such as DFT. In the present study, we adopt the tight-
binding-layer (TBL) scheme combined with the decimation
procedure.!#3%%1 The TBL scheme can incorporate exact
semi-infinite contacts, which should include both Bloch and
evanescent states, and the numerical singularities are elimi-
nated by decimation. Since the TBL Hamiltonian is con-
structed from the bulk KS-DFT Hamiltonian, the resulting
3,k terms are estimated at the same level of accuracy as
Hc. The TBL scheme requires solving a general eigenvalue
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problem; thus the computational cost is O(N?). However, the
electrodes sometimes have a much more regular periodic
structure, consisting of the N . X N primitive cells, than
the contact region. In this case, one can calculate the self-
energy matrices at an O(N) computational cost.

Our basic strategy takes from the scheme of Damle et
al.® i.e., instead of a direct calculation of the self-energy
matrix of the total N4y X N electrode, calculations of a
self-energy matrix 22/ r(E: lgu) for one primitive unit cell with

sufficient &, point sampling are performed instead. These are
then extended to the total L/R regions by making Fourier
copies of the primitive cell

[S0R(E) s = 2 [0 (B, expl- ik (R), ~ R))],

K

(31

where u' is the AO for the atom in the electrode of interest,
but w is for the equivalent atom in the primitive unit cell.

The vector R, corresponds to the position vector. Note that l?”
is the wave vector parallel to the surface (in the plane or-
thogonal to the transport). Since we can construct total self-
energy matrices by solving eigenvalue problems only for the
one primitive unit cell, the use of Eq. (31) provides an O(N)
algorithm. As a test, we have calculated the transmission
coefficient of the Au wire formed by six atoms attached to
the (001) surface in the O bias limit. These results have been
then compared to those obtained with a standard (direct)
calculation of X, performed with the SMEAGOL
program. 46366 For simplicity, we adopt I'-point values for
both NEGF calculations and the electrodes have 3 X 3 struc-
ture; thus N, is set to 3. In order to reproduce the TBL
Hamiltonian of 3 X3 bulk structure, we took 15X 15X20
for lz—point sampling, we calculate the TBL Hamiltonian of
the primitive unit cells of the left-hand side and right-hand
side leads, then construct 29 (E:k;). In Fig. 2, the transmis-
sion coefficients as a function of energy are given as well as
a schematic picture of the C region. The curve calculated by
the direct evaluation of % is almost 1 and constant over
the energy region close to the Fermi level. This is the typical
behavior of an Au atomic wire and it is consistent with pre-
vious theoretical and experimental studies. In contrast, the
result obtained by the simple use of Eq. (31) shows unphysi-
cal oscillations and could not reproduce the constant trans-
mission coefficient. Failures of the simple Damle scheme are
caused by different boundary conditions enforced on Hcc
(periodic for the direction parallel to the surface) and 3, p

!

because summing all k; in Eq. (31) is a Fourier transforma-
tion but does not necessarily satisfy the same boundary con-

dition. Even if the set of & vectors in Eq. (31) is selected as
the same set used for constructing the bulk Hamiltonian for
the primitive unit cell, the above mismatch is not eliminated.
Physically, this is a waveguide effect, i.e., it originates from
the quantum interference of the electronic transverse modes
because the C region is a two-dimensional (periodic) system
but X, & is a (quasi) one-dimensional system.

In order to eliminate the nonphysical waveguide effect,

we introduce the following condition over k; in Eq. (31):
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FIG. 2. (Color online) The transmission coefficient, Ty(E), for
the Au wire in the Au(001) systems. The wire contains six Au atoms
attached on the 2 X2 plateau with 3 X3 electrodes, which is dis-
played in the inset. Ty(E) is plotted as a function of electron energy.
The red (dark gray) solid line and (completely overlapped) dotted
line are the results by the standard method and by our O(N) scheme,
respectively. The blue (light gray) dotted line represents the result
by the O(N) method without the condition given in Eq. (32).

Ell : (Ncellf) =2nm, (32)

where 7 is a translational vector of the primitive unit cell of

the electrode relating to k; and n is an integer. The above
condition enforces the same boundary condition to the self-
energy matrices with two-dimensional Bloch waves (in the
present case, I' point approximation) used to expand the C
region. The transmission coefficient calculated using Egs.
(31) and (32) is shown in Fig. 2, where one can find a perfect
agreement with the result obtained by calculating 3, di-
rectly. Our O(N) scheme can be summarized as follows.

(1) Set the primitive unit cells, which are the minimum
units for the left-hand side and right-hand side electrodes of
the system under investigation, and define the sets of the
related translational vector 7 and the number of the contained
primitive unit cells N.

(2) Calculate the TBL Hamiltonian matrix of the primitive
unit cell with a sufficient E—point sampling.

(3) Construct the self-energies EQ/R(E :lgu) by using the
above TBL Hamiltonian, where k; should satisfy the condi-
tion of Eq. (32).

(4) Calculate the required self-energies X, x(E) defined
on the L/R region by extending the primitive cell as indi-

cated in Eq. (31) with use of the above selected l;)”-point
sampling.

Although we have adopted the I'-point approximation for
the C region in the present example, our method can be
extended to more general cases by estimating the self-
energies for supercells (larger than the L/R regions) by re-
placing 7 with the translational vector of the defined super-
cell. Then one can evaluate the self-energy matrices

235420-9



NAKAMURA et al.

describing the supercell by using I;] points together with the
condition of Eq. (32).

IV. APPLICATION: THE “0.5 RULE” AND SYMMETRY

In this section, we apply our method to an Au atomic wire
and a BDT molecule both attached to Au electrodes. One of
our focuses is the comparison of the inelastic transport prop-
erties in the “low-conductance regime” with that in the
“high-conductance regime;” in particular, we will compare
the changes in conductance and the shape of IETS of realistic
systems. In addition, we have an interest in the molecular
(contact) symmetry and the IETS signal. Though a single and
free BDT molecule has D,, symmetry, the moiety con-
structed by BDT and Au electrodes generally does not have
D,,, structure. This is inconvenient when analyzing the rela-
tion between symmetry and IETS activity since the same
analysis carried out by separating the BDT from coupled Au
electrodes is unclear. However if one adopts (001) structure
for Au electrodes, the moiety (i.e., C region) can maintain
high symmetry (D,,, for zero bias, C,, for nonzero bias); thus
this system is a good prototype for analyzing the properties
of the IETS in molecular junctions. For both systems, we
have checked the validity of the presented NEGF scheme by
comparing some results such as the transmission coefficients
and the self-consistent mean-filed potentials with results ob-
tained by using SMEAGOL as well as with previously pub-
lished studies.

For all the calculations, we adopted the Perdew-Burke-
Ernzerhof (PBE) XC functional.®’” The basis set used for all
the atoms is a pseudoatomic orbital (PAO)-type at the single
zeta polarized (SZP) level, and Troullier-Martins norm-
conserving pseudopotentials are used for the core electrons.®®
The KS-DFT sections are performed with SIESTA,®® and the
calculations of electron-phonon coupling, NEGF-SCF, and
related properties are obtained by using our own program,
which extends over SIESTA.

A. Linear Au atomic wire

The calculated Au atomic wire is displayed in the inset of
Fig. 3(a). We consider a linear Au wire connected to Au(00 l)
42X 42 electrodes and only each top layer has 212
X 242. The wire part consists of four Au atoms. The C re-
gion includes the wire and four monoatomic layers placed at
both the left- and the right-hand sides of the wire. Two-
dimensional periodic boundary conditions are imposed in the
direction orthogonal to the transport. The two outermost lay-
ers at each side of the C region are taken as L and R regions.
We have fixed the distance between the second layers at each
side at 16.88 A and set the lattice constant of Au to the
experimental value of 4.08 A. Only parts of the two top
layers and wire are relaxed so that the vibrational box con-
tains only 12 atoms.

In order to construct the embedding potential and the cor-

rection factor for the density matrix, we formed the W by
adding three and two layers, respectively, outside the L and R
regions as buffer. The phonon modes in the wire are calcu-
lated by constructing the Hessian matrix. This is obtained
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FIG. 3. (Color online) (a) The transmission coefficient, T((E),
for the four Au atomic wire. The black solid line is To(E) plotted as
a function of electron energy. The chain is attached on the
202X 22 plateau with 42 X 442 electrodes and the C region is
shown in the inset. The vibrational box is marked by a red (light
gray) solid line. (b) The eigenvectors for the three longitudinal
modes in the wire.

from total-energy calculations of the W by moving the atoms
in the vibrational box. The e-ph coupling is also obtained by
numerical differentiation of the same KS-DFT procedure,
where only a part of the C region is clipped just as the
Hamiltonian as shown in Sec. IIT A. All of the above KS-
DFT calculations are performed initially for a sufficient
k-point sampling (in the present case 5X5X 1). Then the
required matrices for the NEGF calculations are constructed
at the I' point using the converged results. In the NEGF-DFT,
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the estimation of the conductance and the IETS is carried out
at the I" point only. Since the electrodes have primitive unit
cells of V2 X 2 structure, our O(N) scheme was performed
by setting N to 4.

Our main focus in the present inelastic calculation is that
of obtaining the IETS, therefore it is sufficient to consider
the low-bias regime only, and we set max/min bias to
*0.3 V. In order to obtain the restricted MO space, we have
selected the active MOs that cover the MO energies in the
range [Ey—0.5,E;+0.5] eV, where the MO energies are as-
signed by the zero-bias limit. We found that the size of the
restricted MO is sufficient to get the converged results for
NEGF-SCF in the present bias range. The calculated trans-
mission coefficient as a function of electron energy is pre-
sented in Fig. 3(a). One can observe two main features. First
the value of 7 is almost 1 over a wide energy range around
the Fermi energy, in particular above Ej. Second there is a
peak much larger than 1 at around E—Erp~ 1.0 eV. These
features agree well with the previous theoretical results ob-
tained with SMEAGOL with extensive kj-point sampling.'*

From the Hessian, we have calculated seven phonon
modes related to the internal modes in the wire. Since the
transverse modes are less important than the longitudinal
ones, we focus only on the three longitudinal modes,
{Q4}a=123, with wave numbers of 629, 108.5, and
111.3 ecm™, respectively. In Fig. 3(b), the three eigenvectors
are shown. Modes (), and ()5 are the alternate bond length
(ABL) modes, and the second mode (), is a non-ABL mode.
The change of conductance AG and IETS j—gb are calculated
in several different situations by varying the temperature 7
(5, 15, and 30 K) and broadening parameter 7 (damp/
undamped limit, 0.01, 0.05, and 0.1 meV). In Fig. 4(a), the
conductance change due to e-ph interaction, defined as

ﬂ%}fmz, and the IETS, ;l—‘i, are given as functions of the bias
for a fixed temperature of 5 K. The conductance change de-
creases and the IETS displays a dip for all of the modes. This
means that the 0.5 rule is actually satisfied. The values of AG
for each mode are also shown in the inset of Fig. 4(b) for the
undamped limit. The contribution of the non-ABL mode (),
is much smaller than that arising from the ABL modes and it
is almost inactive in the IETS. The most active mode is the
highest ABL, which is 3-4 times larger that all the other
ABL modes at all 7 values considered, as shown in Fig. 4(c).
The IETS activity of the ABL modes and the fact that the
largest intensity comes from the highest among the ABL
modes have been demonstrated in other studies of linear Au
wires even though the length of wire was different in every
study.>?*2326 The intensities of IETS decrease with increas-
ing 7, but the relative intensities of each mode change little.

In order to proceed with our analysis, we show the scaled
transmission functions, T‘Zf/ ecSym/in ¢ a function of V, in Fig.
5. From Eq. (14), the IET is determined by 7 and T™" in the
undamped limit, but they are dominated by 7°°™ and 7™ in

the damped one. Figure 5 shows that the terms 7€ and 75°™
have almost equal negative values and their absolute values

are more than ten times larger than that of 7_“2“ (we recall that

Ti;‘ is always positive). The dependence on the bias is quite
weak and in fact negligible in the present case. Therefore, the
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FIG. 4. (Color online) (a) The change in conductance, AG, in
the undamped limit for the Au wire system given in Fig. 2. The
included phonons are three internal longitudinal modes, which con-
sist of two ABL modes and one non-ABL. (See the text.) The tem-
perature is fixed at 5 K, and the parameter 7 is taken to equal 0.01,
0.05, and 0.1 meV, and damped/undamped limiting cases. In (b), the
conductance drops related to each of the three modes are shown
separately only for the undamped limit. (c) The IETS signal.

IETS always shows dips, and the relative intensities for each
mode are unchanged when going from the damped to the
undamped limit.
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FIG. 5. (Color online) A plot of transmission coefficient-type
functions, Tzc’“sym’i", as functions of the bias for the Au wire sys-
tem. The mode index « relates to the mode (), in the Au wire as
given in the text. The values are scaled by 7_""3" for O bias, i.e., 7_13" in
the O bias calculation is set to 1. The solid, dashed, and dotted lines
represent Tec, fecsym, and Y_"i", respectively. The sets of black, blue
(dark gray), and red (light gray) lines relate to the modes ;, Q,,
and Q.

The fact that 7°° and 7°°"™ have almost the same values
for any a can be explained by using the “single (resonant)-
level model” just like the 0.5 rule since the Au wire has a
single transmission eigenchannel related to the Au 6s
electron.>?® By considering Eqs. (16) and (17), one can find

out that the difference between T and 7™ is proportional
to the real part of the Green’s function in this single-level
case. For simplicity, we set the energy E to Ep (this will
satisfied in our analysis of the low-bias regime) and it can be
represented as

Re[G(ER)] (33)

T AE+TYAE’

where AE is the energy gap between the resonant level and
the Fermi level and I' is the coupling for both electrodes.
Since the gap is close to 0 and the coupling is sufficiently
large for an Au (metallic) wire, one can expect Re[G(E)] to

be close to 0, i.e., 7_‘;% T\S::Sym for all modes.

Next we analyze the temperature dependence of the IETS
signal. Figure 6 shows the IETS for the damped limit. By
increasing the temperature through the values 5, 15, and 30
K, the dips become broader. This is consistent with the be-
havior of the second derivatives of F,(V,,T), which are in-
dependent of details of the electronic structure. It is interest-
ing that the dip of the first ABL mode is hindered at T
~15 K by the long tail of the broad dip relating to the
highest (most active) ABL mode. This means that some ac-
tive modes do not appear in the IETS when (a) the system
has strongly active modes, (b) the experimental temperature
is slightly higher than the mode energy, or (c) the internal
modes are strongly coupled with the bath.
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FIG. 6. The temperature dependence of the IETS signals in the
damped limit for the Au wire system. The black solid, dashed, and
dotted lines represent the IETS signals for temperatures of 5, 15,
and 30 K, respectively.

B. BDT in D,;, symmetry

The next example is that of the BDT molecule attached to
the hollow site of Au(001) surfaces in the 4y2 X 42 struc-
ture. A picture of the C region and vibrational box is given in
Fig. 7(a). The structure maintains D,;, symmetry not only
when the BDT molecule is considered but also in the entire
C region. Strictly speaking, the symmetry reduces to C,,
when the bias is applied, however we will keep using the
irreducible representations of the D,, point group. Further-
more, the D,;, symmetry can be relaxed to the lower (but
more general) symmetry C,,. For later use, we survey the
symmetry operations that define the point groups. Let us de-
fine the xyz coordinates as follows. The transport direction is
set along the z axis and the BDT molecular plane lies in the
yz plane. Then we can define the D,;, symmetry elements,
which consist of three C, axes, three oy(x,y,z) planes, the x,
y, and z axes, and the yz, zx, and xy planes, respectively. If a
bias is applied, the symmetry is reduced to C,,, where the C,
axis is the z axis and the two o, planes are rthe yzrand X
planes. In contrast, if the electrodes are not ny2 X ny2 or not
(001) surfaces, the symmetry reduces to Cs;,. In this case, the
C, axis is the x axis and oy, is the yz plane. The relations
between the sets of irreducible representations in each of the
point groups are summarized in Table I. The procedures for
constructing the embedding potential, the self-energies, the
Hessian, and the e-ph coupling matrix are the same as in the
case of the Au atomic wire. The calculated transmission co-
efficient is given in Fig. 7(a) and it reproduces the results of
the previous calculations obtained with SMEAGOL, such as
the order of magnitude of Ty(Ey) (~0.05) and the broad peak
below the Fermi level.>>’-72 For the present BDT/Au(001)
system, we modeled the restricted MO space for the NEGF-
SCF as the active MOs that cover the MO energies between
(Ep—0.8) and (EF+0.8) eV. The resulting restricted MO
space provided the converged results within the range of bias
V, e[-0.5,0.5] eV.

By normal-mode analysis of the vibrational box, we could
assign the 30 internal modes corresponding to the BDT mol-
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FIG. 7. (Color online) (a) The transmission coefficient, T((E),
for BDT on the Au(001) electrodes. Ty(E) is plotted as a function of
electron energy. The BDT molecule is attached on the hollow site of
the Au(001) surface, which has the 412 X442 structure. The C
region is shown in the inset. (b) The eigenvectors of the ten selected
active modes for the IETS, where each mode is assignable to the
free BDT molecular internal modes. The labels represent the related
irreducible representation in the D,; point group and the numbering
of the modes. (See the text.)

ecule. We concentrated only on the low internal modes,
whose frequencies are within 0.2 eV, and found ten clearly
active modes by checking the transmission functions. A list
of all of the modes, {Q,},-1_10, is given with their irreducible
representation labels in Table I, and the related eigenvectors
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TABLE 1. The ten selected active modes for the IETS of the
BDT/Au system. The mode labels represent the related irreducible
representations (irreps) in the D,;, point group and numbering. (See
the text.) The value ) is the wave number (in cm™'). The relation-
ships to the irreps of the lower symmetry C,, and C,; groups are
also given.

Q

Mode (em™) C,, irreps. C,), irreps.
B}, 195.2 B, B,
AG 330.9 A A,
A2 333.7 A, A,
B;, 360.7 B, A,
B3, 543.6 B, B,
B, 668.1 A, B,
Al 682.5 A A,
Al 958.7 A, Ag
A, 1040.9 A A,
Al 1546.7 A, A

oo

are shown in Fig. 7(b). For convenience, we denote a mode
as A;, etc., where “Ag” is the label of an irreducible repre-
sentation in D,;,, and the index ‘“2” means that « is 2, i.e., it
is the second of the selected ten modes. We found that the
values of (), are renormalized by the existence of the elec-
trodes, but the eigenvectors have a clear one-to-one corre-
spondence to the eigenvectors of the free BDT molecule. The
calculated total IETS is shown in Fig. 8(a) for both the
damped and the undamped limits at 7=5 K. First, we found
five totally symmetric modes (A,) in the considered energy
range, and all of these modes are active for the IETS. The
most active among the ten active is the totally symmetric
stretching mode, A and the tendency of the relative inten-
sities of the remaining A, modes agrees well with the results
obtained by Gagliardi et al.*' and by Troisi and Ratner,*’
although their formulations of IETS are restricted to damped
limit case with omitting elastic correction terms. In their cal-
culations, all values of the frequencies (particularly for the
asymmetric modes) are slightly different from ours because
of the difference choice of adopted C region when modeling
the E-M-E system. However, the eigenvectors are assignable
to the modes of the isolated BDT molecule in both the pre-
vious study and our study; thus it is meaningful to compare
symmetry properties for these studies in the damped limit
case.

In the MO basis, the e-ph coupling M“ has nonzero diag-
onal elements only for the A, modes. Hence, the deformation
potential, which is defined as the derivative of the MO en-
ergy, will dominate the IETS intensities. In contrast, the sym-
metry properties for the asymmetric modes are much more
complex to analyze because only the coupling through the
different MOs is dominant. The ten most active modes ob-
tained by Gagliardi et al.*' consist of five A,, two B,,, one
B3, one By, and one A, modes. In the present study, the B,
mode is more active than the Bs, in their result, but the two
resulting sets of active modes agree well in the damped limit.
Since the B, and A, modes belong to the same A, irreduc-
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FIG. 8. (Color online) (a) The IETS signals for the BDT/Au
system. The dashed red (gray) line represents the IETS in the
damped limit and the solid blue (gray) line is for the undamped
limit. The temperature is fixed at 5 K. Each mode relating to the
peak positions of the signals is also shown. The detailed structures
of the moiety, which consist of several peaks corresponding to each
mode, are shown for the undamped limit in (b) and (c).

ible representation of the C,, point group, related pathways
may be mixed when bias is applied in our model. In the
energy range below 0.1 eV, the highest peak of IETS is for
the B,, modes, whose intensities are comparable to the IETS
of the A, modes. This feature agrees with the result of Troisi

PHYSICAL REVIEW B 78, 235420 (2008)

TABLE II. The transmission functions, 7%, 7Y™ and 7™, for
the ten selected modes. All of the values are scaled by the value of

Til‘}), ie., T for A;O is set to 1.

Mode T TocSym 7

B, 1.070 -0.030 0.294
B} 0.822 -0.030 0.472
A2 0.502 -0.018 0.385
B}, 0.426 -0.008 0.104
B, -0.035 -0.003 0.061
B, 0.497 -0.004 0.132
Al -0.045 -0.024 0.231
A 0.271 -0.014 0.214
A, 0.695 -0.055 0.816
Al 1.139 -0.062 1.000

and Ratner?” but not with those of Ref. 41. Furthermore, the
active asymmetric modes are only the out-of-plane modes;
hence the propensity rule proposed in Ref. 47 is satisfied
here in our damped limit calculation. However, the details of
the relative IETS intensity of each mode seem to be quite
sensitive to the degree of damping used in the calculations
except for the A, modes. It is then difficult to formulate
stricter selection rules for higher symmetry such as D,;, by
comparing our data or previous studies.

Now we analyze the peak/dip of IETS for both the
damped and undamped limits. From Fig. 8 we can see that
the IETS shapes in the form of peaks in both the limiting
cases. Since the transmission coefficient is much lower than
0.5 around the Fermi level, the 0.5 rule is satisfied for all the
modes in both the damping limits. However, the relative in-
tensities for each mode are different in the damped and un-
damped limits. For instance, let us focus on moieties of
IETS, B),. (A}, A,, B},), (Bf,. A]), and A}, which are pre-
sented in Figs. 8(b) and 8(c). In the undamped limit, the peak
intensities of these moieties are between 1 and 1.7 times
larger that that of the A%, On the other hand, in the damped
limit, the moiety (A2, A, Bg‘u) is much stronger than the Ag
(more than 3.5 times), and the peak height of the lowest B} ¢
relative to that of A% also shows a large change (more than
2.5 times) when compared to the case of the damped limit.
The above large difference of the relative IETS intensities
between the damped and undamped limits is in striking con-
trast to the situation presented for the Au wire. In order to
resolve this contradiction, we summarize the (normalized)
transmission functions of the BDT/Au(001) system in Table

I1. Several features emerge from the table. First, the term 7<°
is positive at the given bias for all the modes, but the values

of the related Y_ffsym are negative. Second, the absolute val-

ues of 7Y™ are much smaller than those of 7°¢ and 7™, with
the latter two terms being of the same order of magnitude.
These features of the transmission functions are quite differ-

ent from those of the Au wire, where 7 and T¢¥™ have
almost the same negative values and dominate the IETS. In

the present BDT/Au system, the inelastic terms (7_“1‘;) domi-
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nate the shape of IETS in the damped limit, but the elastic

correction terms (7_‘?) give a similar contribution to the IETS
in the undamped one. Therefore, the sets of IETS in the two
limiting cases originate from a somewhat different structure

of their relative intensities, although the positive sign of f‘;c

and small absolute value of 7™ ensure that the final result
always complies with the 0.5 rule. As described in Sec. IV A,

the large difference between T<° and 7™ means that the
value of Re G(E) is not negligible. However, further analysis
is not straightforward because the present system is not a
simple one-channel conductive system and the off-diagonal
terms (in the MO basis) play an important role in determin-
ing the IETS of the asymmetric modes, i.e., the single-level
model is not insightful. Unfortunately, it is difficult to estab-
lish a general propensity rule for the shape of the IETS in the
present LOE framework because we do not have clear rules

for determining the sign of T’if or the relation of magnitudes
for T5Y™ and T In absence of a strict rule for the multi-

channel case, a positive 7 and negative 7*¥™ provide the
possibility for the shape of the IETS of each mode to change
individually from a peak to a dip when going from the un-
damped to the damped limit. This is particularly true for the
asymmetric modes.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have developed the efficient MO ap-
proach for the self-consistent nonequilibrium Green’s func-
tion method. The main improvements over our previous
approach!® can be summarized as follows: (i) an improved
construction of the embedding potential matrix, (ii) the intro-
duction of a correction factor for the density matrix associ-
ated with the EGF-SCF and the embedding potential, and
(iii) a numerically accurate O(N) method for calculating the
self-energy matrices for the electrodes. As a test of these
schemes, we have performed NEGF-DFT calculations for a
Au 6 atom long wire connected to (001) Au electrodes. Our
results have shown good agreement with the calculations ob-
tained by the standard NEGF-DFT approach. In particular
we wish to stress the benefit of the mentioned point (iii). The
simple application of Damle’s method® for the evaluation of
the self-energy matrices sometimes gives seriously inaccu-
rate results because of nonphysical waveguide effects (see
Sec. III). Therefore the careful modeling of the electrodes
self-energies is important, in particular, when incorporating
the periodic boundary conditions.

By using the efficient MO approach, we have then per-
formed ab initio calculations for the inelastic transport
within the LOE formalism for e-ph coupling. We have
adopted the conventional expression of the conductance and
IETS by simplifying the rigorous expression for total cur-
rents relating the elastic and inelastic terms derived by Viljas
et al.*® Ab initio calculations of the conductance and the
IETS have been performed for the two systems: a Au 4 atom
long wire (high conductance) and a BDT molecule (low con-
ductance) both attached to Au electrodes. These are good
benchmarks of the 0.5 rule. In order to perform a systematic
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analysis, we have focused on their temperature dependence,
differences between the damped and undamped limits, and
the propensity of symmetry for the IETS.

In both systems, the 0.5 rule was satisfied for all the pho-
non modes, i.e., the shape of the IETS always presents dips
for the Au wire (0.5<T,~1.0) and peaks for the BDT
(Ty~0.05<0.5). In the former case, the elastic correction
terms, which relate to background scattering arising from
virtual-phonon excitation, dominate the shape (and the inten-
sity) of the IETS. The temperature affects strongly the struc-
ture of the total IETS when the thermal damping is not neg-
ligible. Upon increasing the temperature, the shape of the
IETS becomes broader, and the tail of the strongest IETS
signal covers the other dips. Thus the temperature and cou-
pling to bath modes in electrodes should be always consid-
ered when analyzing experimental IETS.

When the bridge is the BDT molecule, the dominant term
in the IETS changes from being the inelastic term in the
damped limit to a competition between elastic and inelastic
terms in the undamped case. Hence, details of the structure
of the IETS are slightly different between the two limiting
cases. Our theoretical expression for the IETS gives a simple
insight into these findings. It is known that omitting the elas-
tic correction and bias-dependent nonequilibrium phonon
distributions (vibrational heating) cannot describe the correct
structure of the IETS such as the shape (peak/dip) and the
relative intensities. However, several theoretical models have
been successfully applied to the present BDT/Au system
without including these corrections. Our calculations show
that the contributions of the elastic corrections to the IETS
signals are of the same sign (i.e., peak) and the same order of
magnitude as the inelastic terms for all of the modes. As a
result, the gross features of the IETS (shape, activity of the
modes) in the undamped limit do not change drastically
when compared to the damped limit. This is the main reason
why the damped limit is useful for a general analysis of the
IETS in the BDT/Au system. However, in general there are
no fundamental reasons for the elastic corrections and inelas-
tic terms always to have similar values, same order, and sign.

Finally, we comment on the symmetry properties of the
BDT/Au system. In our study, the whole contact region
maintains the D,;, symmetry (in the O bias limit); thus the
calculated data are not affected by the locality of the pro-
jected MOs on the BDT molecule. First, all of the IETS
signals relating to the totally symmetric modes (A,) are ac-
tive. This could be understood with a simplified model for
e-ph coupling (molecular on-site Holstein model). Much
more interesting are the asymmetric modes (i.e., modes not
belonging to the A, irreducible representation). Only out-of-
plane asymmetric modes, which relate to the A, or B, repre-
sentation in the C,, point group, give sufficiently strong
IETS signals in the low-bias regime. Hence, the propensity
rules proposed by Troisi and Ratner*’*® are satisfied. How-
ever, we emphasize that a straightforward generalization of
their rule is not necessarily suitable because of the competi-
tion between the elastic corrections and inelastic terms plays
an important role in determining the IETS signals. In particu-
lar, the IETS is modified strongly by nonthermal vibrational
heating. One promising route to rationalize these results is an
extension of the propensity rules based on the transmission

235420-15



NAKAMURA et al.

channels proposed by Gagliardi et al.*' and Paulsson et al.,”
although the simplicity of the rule is lost when compared
with original simple rule proposed by Troisi and Ratner.*748
When one proceeds in this direction, the following two ques-
tions must be answered: (a) Is it possible to extend eigen-
channel concept, which rules out all of transmission func-
tions? (b) Is there a simple tendency to determine both the
sign and relative intensity of the elastic correction terms?’!

In summary, we have proposed an efficient ab initio
scheme for calculating ballistic and inelastic transports in
molecular (nanowire) junctions, and we have calculated the
conductance and IETS for two typical high- and low-
conductance systems. Focusing on the 0.5 rule and propen-
sity of symmetry, we performed systematic calculations and
a thorough analysis including the effects of nonthermal vi-
brational heating as well as virtual-phonon excitation. Fur-
ther applications to other molecular systems and a more de-
tailed analysis to extend the propensity rule are currently in
progress.
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APPENDIX: CONVENTIONAL LOE FORMS FOR
TERMINAL CURRENTS

In this appendix, we provide a brief explanation on how
to obtain the terminal currents for the elastic correction and
inelastic term at the same computational cost as that for ob-
taining the ballistic current. The starting equations are the
rigorous LOE (E1)—(E3) given in Ref. 26. The first approxi-
mation consists in replacing the phonon density with a sum
of the delta functions

pal) == 1 D ) = 8o~ 0,) = 80+ 0,).

(A1)

Then we can easily perform the integration over the phonon
energy . From Eq. (E3) in Ref. 26, one can obtain the
inelastic terminal current for the mode « as follows:

. 1 .
i (E) = —TadNa(fi= [ = fra(1 = 1)}

1 .
+ ;Tlc?—{Na(fL —fr) = fil=fr)},  (A2)

where T is E dependent [see Eq. (18)] and £,z is the Fermi
distribution. The symbol + (—) in the lower subscript indi-
cates that the energy E in the functions should be replaced
with E+Q,(E-Q,). Equation (A2) is greatly simplified
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when compared to Eq. (E3), but one needs twice as much
computational effort to calculate iﬁel(E) than i%(E) for each
a. Therefore, if many modes are required to model the in-
elastic transport, this form is still rather inconvenient. As
long as the DOSs of the leads and (ballistic) transmission
coefficient T, are smooth functions of E around E~Q,, e.g.,
the following condition:

To(E = Q,) - Ty(E)
Ty(E)

<1 (A3)

is satisfied in the energy range |E-Eg|=V,, we can approxi-
mate T%, to T% and expect that the dominant energy ex-
change is contained in the coexistence of the shifted Fermi
functions, f and f.. Thus one can obtain

. 1 .
i (E) = —T{Na(2fi.~ fre = fi)
—fre(l =)+ fr(1 = fr)}

1 .
= :TT;]{ZNa(fL_fR) + (L= f1) + fr(1 = frO)}
(A4)

Because evaluating the values of f- is an easy task and the
a dependence of 7% is now reduced only to that contained in
the M“ matrix, the inelastic terminal current can be obtained
simultaneously with the ballistic current. The total inelastic
terminal current i"™!(E) is represented by = ,i"(E).

The elastic correction term for mode « can be further
separated into the three terms i°(E), i“(E)+i**(E), and an
asymmetric correction i5°"™(E); the last term relating to the
principal part integral for the real part of the phonon Green’s
function. In the present form, we omit the asymmetric term
(i.e., the principal integral part). This is a good approxima-
tion if the E-M-E system consists of symmetric electrodes.
Following a similar procedure to that used to derive Eq.
(A4), we obtain

1
izc(E) = 7_7{7?+Na(.fL _fR) + Tzc—(Na + 1)(.fL _fR)}

1
= ;]-(Z:(ZNQ"- 1)(fL_fR)’ (AS)
EHE) 4 SHE) = T+ TS o= i)
- (7{;} -+ TZC—R r)(fL=fr)}
2
= ;{T;CL(fu ~f1)(fL=1r)
+ TZCR(fm ~fr)(fr=fo)}s (A6)

where the transmission coefficient-type function T, is given
in Eq. (16) and T5“® are
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TYR(E) = Tm T{MYG L (E)T  x(E
+ Vy/2) G EYMOG L (E)T gy (E
= Vy2)GLAEIT g (E + Vy/2) G AE)].
(A7)

The elastic correction terminal currents 8i°'(E) is expressed
as

1
SiCNE) = 7_7{7?;(2Na+ D= fr) + 2T (fry = fL)(fL = f#)

+ 2TZCR(fR+ =R =fr)}-

The total elastic correction is the sum over the «a, i.e.,
Si*°(E)=2,6i% (E) and can be estimated simultaneously with
the ballistic current just as with the inelastic term. If one
needs each terminal current, Eq. (A8) is the final result of our
conventional LOE. When only the (integrated) currents and
IETS signals are required, more simplifications are possible.
Since the transmission functions are smooth functions of E in
our assumption, the integrals over E for the above terminal
currents may be separated into the averaged transmission

(A8)
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functions and an analytical integral of the remaining Fermi
functions. In this respect, the various 7 functions are re-

placed to the average T. With noting the assumption that the
DOS, etc. are smooth function of E and the leads are sym-

metric, the averages over E, T‘qu R can be approximated as

TZCL/R ~ %Tchym(E) — %(fch + Tch)’ (A9)
where the term Tffsym has been introduced in Eq. (17). Note
that the integrals contain the factor (f;—f), thus the average
should be carried out in a convenient range around [y , ig].
Then we finally arrive at the expression for the conductance
and current given in Egs. (13) and (14).

In order to obtain the phonon distribution function N,
one needs similar expressions for the self-energies of the
phonons and this is possible by using the same approxima-
tions described above. The only difference is that the self-
energies do not contain the factor (f; —fz) explicitly; thus the
E dependence of the resulting transmission functions such as
T‘;h should be approximated by the values at E=E}. instead of
the average. As a result, the additional computational cost to
evaluate N, is negligible.
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